Energy-velocity description of pulse propagation in absorbing, dispersive dielectrics

نویسندگان

  • George C. Sherman
  • Kurt Edmund Oughstun
چکیده

The evolution of an electromagnetic pulse propagating through a linear, dispersive, and absorbing dielectric (as predicted by the modern asymptotic extension of the classic theory of Sommerfeld and Brillouin) is described in physical terms. The description is similar to the group-velocity description known for plane-wave pulses propagating through lossless, gainless, dispersive media but with two modifications: (1) the group velocity is replaced by the velocity of energy in time-harmonic waves, and (2) a nonoscillatory component is added that consists of a wave that grows exponentially with time with a time-dependent growth rate. In the nonoscillatory component the growth rate at each space–time point is determined by the velocity of energy in exponentially growing waves in the medium. The new description provides, for the first time to our knowledge, a physical explanation of the localized details of pulse dynamics in dispersive and absorbing dielectric media and a simple mathematical algorithm for quantitative predictions. Numerical comparisons of the results of the algorithm with the exact integral solution are presented for a highly transparent dielectric and for a highly absorbing dielectric. In both cases the agreement is excellent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Failure of the group-velocity description for ultrawideband pulse propagation in a causally dispersive, absorptive dielectric

The accuracy of the group-velocity description of dispersive pulse propagation in a double-resonance Lorentz model dielectric is shown to decrease monotonically as the propagation distance increases, whereas the accuracy of the asymptotic description increases monotonically as the propagation distance increases above a single absorption depth in the medium at the pulse carrier frequency. © 1999...

متن کامل

Real-time recoverable and irrecoverable energy in dispersive-dissipative dielectrics.

We discuss the recoverable and irrecoverable energy densities associated with a pulse at a point in the propagation medium and derive easily computed expressions to calculate these quantities. Specific types of fields are required to retrieve the recoverable portion of the energy density from the point in the medium, and we discuss the properties that these fields must have. Several examples ar...

متن کامل

Role of the instantaneous spectrum on pulse propagation in causal linear dielectrics.

A model-independent theorem demonstrates how a causal linear dielectric medium responds to the instantaneous spectrum, that is, the spectrum of the electric field pulse that is truncated at each new instant (as a given locale in the medium experiences the pulse). This process leads the medium to exchange energy with the front of a pulse differently than with the back as the instantaneous spectr...

متن کامل

Transient QED effects in absorbing dielectrics

The spontaneous-emission rate of a radiating atom reaches its time-independent equilibrium value after an initial transient regime. In this paper, we consider the associated relaxation effects of the spontaneous-decay rate of atoms in dispersive and absorbing dielectric media for atomic-transition frequencies near material resonances. A quantum mechanical description of such media is furnished ...

متن کامل

Physical significance of the group velocity in dispersive, ultrashort gaussian pulse dynamics

The properties of ultrashort gaussian pulse propagation in a dispersive, attenuative medium are reviewed with emphasis on the pulse velocity. Of particular interest is the group velocity whose physical interpretation loses meaning in causally dispersive materials as the temporal pulse width decreases into the ultrashort pulse regime. A generalized definition of the group velocity that applies t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995